Какие параметры определяют быстродействие накопителей. Ликбез по жёстким дискам: рекомендации по выбору накопителя

  • Дата: 10.02.2024

На первый взгляд кажется, что рынок жёстких дисков не так динамичен, как рынок процессоров или видеокарт. Большинство потребителей считают, что жёсткие диски не развиваются так быстро, как другие комплектующие современного персонального компьютера. Однако на практике всё далеко не так – производители жёстких дисков находятся в постоянном поиске эффективных решений для улучшения характеристик винчестеров. Все эти заблуждения от недостатка информации, у большого количества среднестатистических пользователей ПК знания о жёстком диске – на уровне строчки из прайс-листа: «Samsung 160 Гбайт 7200 об./мин.». В сегодняшнем материале мы хотим восполнить этот пробел и рассказать вам, дорогие читатели, что такое винчестер.

Жёсткий диск Western Digital

Жёсткий диск Western Digital

Немного теории

Жёсткий диск представляет собой сложное устройство для хранения данных, в основу которого положен принцип магнитной записи электрических сигналов.

Винчестеры используют одну или несколько магнитных пластин, на которые нанесены концентрические дорожки. Запись и хранение информации на этих пластинах происходит за счёт преобразования электрических сигналов в определённые изменения магнитного поля с последующим воздействием этим полем на магнитную пластину. Благодаря явлению остаточного магнетизма следы от этих воздействий сохраняются в магнитном материале на длительный срок. Считывание информации, то есть воспроизведение электрических сигналов, происходит точно так же, только в обратном направлении.

Магнитные домены или битовые ячейки представляют собой чередующиеся участки с различным направлением намагниченности. Плотность магнитной пластины определяется размерами ячеек: чем они меньше, тем выше плотность записи информации.

Битовые ячейки формируют секторы, которые впоследствии определяют минимальную логическую единицу хранения данных – кластер. Размер кластера меняется в зависимости от использования файловой системы – NTFS или FAT32. В конечном итоге кластеры образуют те самые пресловутые мегабайты, которые определяют ёмкость жёсткого диска.

Для считывания и записи информации используются так называемые головки, которые собраны на механическом перемещающемся приводе, предназначенном для позиционирования. Количество головок зависит от количества пластин. Для каждой магнитной пластины применяется по две головки – при условии, что используются обе её стороны. Визуально процесс позиционирования головок напоминает виниловый проигрыватель.

Пример работы жёсткого диска

Ёмкость жёсткого диска напрямую связана с плотностью и количеством пластин. Всё достаточно просто: чем больше плотность и количество пластин – тем больше объём жёсткого диска. Однако повышать ёмкость исключительно за счёт увеличения количества пластин бессмысленно. Во-первых, корпус обыкновенного 3,5-дюймового винчестера способен уместить максимум 5 пластин и 10 головок. Во-вторых, большое количество пластин и головок увеличивает энергопотребление и тепловыделение, что повышает риск аппаратного сбоя из-за большого числа подвижных элементов.

Таким образом, для развития жёстких дисков производителю очень важно работать над увеличением плотности применяемых пластин. Для увеличения линейной плотности записи информации необходимо максимально уменьшать длину битовых ячеек и делать переходы между ними максимально резкими. На первый взгляд в теории кажется, что всё достаточно просто: уменьшай себе длину битовых ячеек и клепай пластины. Однако на практике всё немного иначе, и с уменьшением длины у битовой ячейки снижается устойчивость к внешним магнитным полям, в результате чего возникает так называемый супермагнитизм. Длина битовой ячейки уменьшается до критической отметки, и размагничивающиеся поля становятся настолько большими, что ячейка саморазмагничивается и исчезает. Говоря простым языком, происходит самопроизвольное стирание данных.

Основные игроки рынка винчестеров смогли решить эту проблему. Благодаря технологии перпендикулярной магнитной записи PMR (Perpendicular Magnetic Recording) производителям жёстких дисков удалось получить плотность в 200 Гбайт для одной пластины. Перпендикулярное расположение магнитных доменов позволило достигнуть высокой плотности без проявления суперпарамагнитного эффекта.

Формфактор, интерфейс и кэш-память жёстких дисков

Винчестеры получили очень широкое применение в различных устройствах: персональные компьютеры, ноутбуки, КПК, MP3-плееры и пр. Одним из основополагающих моментов типа жёсткого диска является его формфактор, который, в свою очередь, определяется диаметром пластин. Обычные десктопные жёсткие диски используют 3,5-дюймовые пластины и предназначены для установки в соответствующие отсеки корпусов настольных ПК.

Магнитные пластины диаметром 2,5 дюйма используются в мобильных жёстких дисках, которые широко применяются в ноутбуках и внешних портативных накопителях.

Есть и устройства, использующие пластины диаметром 1,8", 1" и 0,8". Как правило, такие жёсткие диски используются в ультрапортативных ноутбуках, MP3-плеерах и других ультрамобильных девайсах.

Большинство жёстких дисков выпускается для двух интерфейсов – SATA и PATA. Их пропускная способность составляет 300 Мбит/с (Serial ATA II) и 133 Мбит/с соотвественно. На первый взгляд Serial ATA выглядит куда привлекательнее. Как говорится, многомегабайтная разница налицо, однако где преимущество от использования интерфейса с пропускной способностью 300 Мб/с, если стандартный жёсткий диск со скоростью вращения шпинделя 7 200 об./мин. имеет скорость чтения с пластин до 90 Мбит/с. Очередной маркетинг с точки зрения производительности. И всё же Serial ATA имеет конструктивное преимущество в виде тонкого шлейфа, который удобнее прокладывать в корпусе, чтобы он не мешал циркуляции воздушных потоков.

Serial ATA – интерфейс

Serial ATA – интерфейс

Объем кэш-памяти большинства современных жёстких дисков составляет 8 и 16 Мбайт, хотя встречаются на рынке и модели с большим объёмом кэша. Для примера можно взять жёсткие диски Hitachi DeskStar 7K1000 HDS721075KLA330 и DeskStar 7K1000 HDS721010KLA330, объём кэша у которых составляет 32 Мбайт. В теории больший объём кэш-памяти – это хорошо, жёсткие диски хранят в кэше входящие команды и алгоритмы для предварительного кэширования данных, да и очередь команд NCQ (Native Command Queuing) тоже требует некоторого количества памяти. Однако на практике оказывается, что жёсткий диск с 16 Мбайт кэш-памяти не имеет какой-либо существенной прибавки в скорости по сравнению с аналогичной моделью, оснащённой 8 Мбайт.

Печатная плата жёсткого диска

Печатная плата жёсткого диска

Производительность жёстких дисков

На производительность жёсткого диска влияют несколько параметров: скорость вращения шпинделя, время доступа, плотность записи, интерфейс, формфактор, объём кэш-памяти, диаметр и количество пластин – некоторые сильно, некоторые не очень (например, интерфейс).

Скорость вращения шпинделя является одним из ключевых параметров, определяющих быстродействие накопителя на жёстких дисках. Данный параметр измеряется в оборотах в минуту (RPM или RotatePerMinute) и напрямую связан с линейной скоростью головок чтения/записи. Говоря простым языком, чем быстрее крутится шпиндель, тем больше данных могут считать/записать головки на магнитные пластины. Большинство жёстких дисков, рассчитанных на установку в настольные ПК, имеют скорость вращения шпинделя 7200 об./мин., ноутбучные накопители – 5400 об./мин., старые мобильные накопители – 4200 об./мин. Серверные решения имеют более внушительные характеристики – 10000 или 15000 об./мин. У десктопных решений есть приятные исключения в виде жёстких дисков Western Digital Raptor, у которых скорость вращения пластин составляет внушительные 10000 об./мин.

Western Digital Raptor X WD1500AHFD

Другой параметр – время доступа представляет собой временной промежуток, который требуется на ожидание подхода требуемого сектора, когда головки встанут на нужную дорожку. Очевидно, что время доступа напрямую связано со скоростью вращения шпинделя: чем быстрее пластина докрутится до необходимого ожидаемого сектора, тем быстрее головка считает его.

Диаметр пластин также влияет на производительность накопителя на жёстких дисках. Дело в том, что винчестеры с одинаковой скоростью вращения шпинделя имеют и одинаковую угловую скорость. Расстояние, которое за секунду проходят головки на внешних и внутренних дорожках, разное, в последнем случае оно меньше. Соответственно, линейная скорость на внутренних дорожках, которые ближе к центру пластины, гораздо меньше, чем на внешних, расположенных ближе к её краям. Из всех этих фактов несложно вывести логическое заключение, что жёсткие диски с пластинами диаметром 2,5 дюйма не смогут на равных тягаться с 3,5-дюймовыми собратьями.

Количество пластин играет косвенную роль в производительности жёстких дисков. Для того чтобы понять, в чем суть, достаточно представить современную линейку жёстких дисков от какого-либо производителя. Допустим, данная линейка жёстких дисков использует пластины плотностью 200 Гбайт. Производитель не может выпускать жёсткие диски только 200, 400 и 600 Гбайт, потому что рынок диктует другие условия, потребители хотят видеть на прилавках магазинов доступные модели объёмом 250 и 320 Гбайт. Соответственно, такие модели винчестеров используют не полную доступную ёмкость магнитной пластины, а определённую её часть. Как правило, не используется та самая медленная часть внутренних дорожек. Несложно сделать вывод, что у жёстких дисков, использующих «обрезанные» магнитные пластины, минимальные скорости передачи оказываются несколько выше, чем у винчестеров, использующих полную доступную ёмкость.

Производительность обусловлена рядом параметров винчестера, однако если трезво взглянуть на вопрос быстродействия, то на практике в большинстве случаев нереально будет заметить «на глаз» разницу между жёсткими дисками последних поколений со скоростью вращения шпинделя 7200 об./мин. производства Seagate, Hitachi, Samsung или Western Digital. Разница ощутима при использовании двух накопителей на 7200 об./мин. для массового рынка в конфигурации RAID 0 или в случае использования скоростных жёстких дисков – например, того же Western Digital Raptor со скоростью вращения шпинделя 10000 об./мин.

Надёжность жёстких дисков

Жёсткий диск – достаточно сложный элемент компьютера, так как является электронно-механическим изделием и ко всему прочему работает при больших физических нагрузках. Механические элементы не вечны, и стоит чётко понимать, что винчестер рано или поздно выйдет из строя. Поэтому, чтобы не потерять важные данные, мы настоятельно рекомендуем делать резервную копию информации. Если жёсткий диск выйдет из строя, вы сможете купить новый и записать данные из back-up. Всегда стоит помнить один важный момент: с ростом ёмкости жёсткого диска и, соответственно, объёма информации на нём возрастают требования к резервированию данных, back-up попросту становится больше.

Надёжность жёстких дисков измеряется временем наработки на отказ (Mean Time Between Failures). Параметр MTBF для каждой модели винчестера можно найти на сайтах производителей. Как правило, большинство жёстких дисков имеют сопоставимый уровень MTBF, исключение составляют серьёзные Enterprise и серверные решения.

Контролировать состояние жёсткого диска можно при помощи технологии самотестирования, которую разработали производители винчестеров. S.M.A.R.T. (Self-Monitoring Analysis and Reporting Technolodgy) заключается в том, что жёсткий диск самостоятельно мониторит состояние своей работоспособности и заранее предупреждает пользователя о возможных ошибках и серьёзных последствиях.

Для того чтобы правильно выбрать жёсткий диск, нужно определиться, что для вас критично в первую очередь: производительность, ёмкость или и то и другое вместе. Если вы хотите приобрести недорогой и шустрый винчестер, который будет использоваться для Windows, так называемый системный жёсткий диск для операционной системы, тогда стоит присмотреться к моделям небольшой ёмкости, которые обладают приличными скоростными характеристиками. Для примера можно взять 160-гигабайтные модели производства Western Digital и Hitachi, Caviar SE WD1600AAJS и DeskStar 7K160. Последнюю мы уже рассматривали в одном из материалов .

Hitachi DeskStar 7K160 1

Если стоимость для вас не критична и вы хотите получить бескомпромиссное быстродействие от дисковой подсистемы в домашнем ПК, тогда стоит посмотреть в сторону доступных Serial ATA десятитысячников производства Westerm Digital. Raptor WD1500ADFD и Raptor X WD1500AHFD относительно недавно побывали у нас в тестовой лаборатории и продемонстрировали отличную производительность.

Модуль поиска не установлен.

Пути повышения производительности винчестера

Когда пользователь, наблюдая за песочными часами на мониторе, приходит к выводу, что его компьютер безбожно "тормозит", и адресует свое негодование по этому поводу Microsoft, прав он только отчасти

Чаще всего раздражающее ожидание связано с загрузкой файлов с винчестера, а не с работой центрального процессора под руководством Microsoft Windows и ее приложений. Нет, конечно, это не снимает ответственности с Microsoft и других, кстати, разработчиков программного обеспечения за задержки в работе компьютера. Не с Луны же свалились на нашу голову эти бешеного размера файлы.

Но и сами мы хороши. Радуемся красивым картинкам на экране? Приветствуем появление высококачественного звука, видеозаставок, игрушек с богатой графикой? Не возражаем, чтобы наши документы были оформлены как можно лучше и насыщеннее, а в базах данных хранилась информация едва ли не обо всем на свете? Тогда не надо злиться, что файлы стали "неподъемными".

Другое дело, что надо стремиться к сбалансированной производительности как аппаратных узлов компьютера, так и установленных на нем приложений. Мощной операционной системе и производительным прикладным программам следует предоставить и процессор побыстрее, и винчестер не только более емкий, но и более "скоростной". Кстати, популярная рекомендация поставить больше оперативной памяти, чтобы машина не "тормозила", напрямую связана с недостаточной производительностью винчестера.

От чего зависит быстродействие винчестера?

Накопитель на жестких магнитных дисках, он же винчестер, v устройство электронно-механическое. Если не вдаваться в подробности, можно считать, что механическая часть его включает приводы пластин (дисков), сборки головок чтения и записи. Электроника винчестера представлена головками чтения и записи, каналом чтения, контроллером интерфейса, буферной памятью, схемами управления приводами пластин и головок.

Соответственно, часть параметров винчестера характеризуют его механику, а другая часть v электронику. Эти характеристики, хотя и кажутся малозависимыми друг от друга, на самом деле тесно увязаны между собой. Чтобы добиться прогресса, скажем, во временных параметрах накопителя, характеризующих быстродействие его механики, необходимо значительно усовершенствовать и его электронику. И наоборот.

Остановимся на основных характеристиках, по которым можно судить о производительности винчестера. В первую очередь всегда упоминают временные характеристики привода v среднее время поиска и ожидания. Первая величина показывает, сколько времени потребуется на перемещение головок к нужной дорожке. Вторая v сколько придется подождать, пока под головками окажется требуемый сектор - она напрямую связана со скоростью вращения пластин. Еще несколько величин составляют параметр, известный как "среднее время доступа к данным".

Среди "электронных" характеристик чаще всего обращают внимание на внешнюю скорость передачи данных, которая на самом деле является параметром интерфейса, соединяющего накопитель с системной шиной компьютера, а не самого накопителя. Данные с такой скоростью (или близкой к ней) передаются лишь в том случае, если они были считаны заранее и находились в буфере (см. ниже).

Реже упоминают внутреннюю скорость передачи данных, которая как раз и показывает, как быстро работает канал чтения винчестера, то есть с какой скоростью данные считываются с пластин и помещаются в буфер. В последнее время с учетом роста интенсивности обращений программ к жесткому диску эта величина становится все важнее. Большое значение играет также емкость встроенного в накопитель буфера и его организация. Буфер призван сгладить несоответствие между внутренней и внешней скоростью передачи данных.

Попробуем разобраться, как все эти параметры связаны между собой, и поговорим о путях повышения производительности винчестеров. Проблема эта волнует все компании, производящие накопители на жестких дисках. Как свидетельствуют публикуемые в прессе обзоры, наибольших результатов в этом добилась сегодня корпорация IBM (по крайней мере, в секторе IDE-накопителей для настольных компьютеров). Поэтому в дальнейшем я воспользуюсь данными, приводимыми в технических документах этой компании.

Повышение скорости вращения пластин

При обслуживании случайных запросов на чтение или запись производительность винчестера на 90% определяется его механическими характеристиками, такими как время поиска (параметр движения головок) и скорость вращения пластин (т.е. самих дисков). Под случайными запросами понимаются обращения к файлам, записанным на дисках в разных местах. Такой режим типичен для работы простых приложений Windows v текстовых редакторов, электронных таблиц, навигаторов Интернет, электронной почты и т.п.

На долю электронных факторов, включая внутреннюю скорость передачи данных по каналу чтения, выдачу их из буфера винчестера, внешнюю передачу данных по IDE-интерфейсу и прием операционной системой, остается 10%. Тут надо учитывать, что хотя внутренняя скорость передачи данных считается чисто электронным параметром, она серьезно зависит от скорости вращения пластин.

Из двух механических факторов v времени поиска и скорости вращения v наибольший эффект с точки зрения повышения производительности винчестера достигается при увеличении скорости вращения дисков. Это подтверждается начавшимся переходом индустрии на IDE-винчестеры со скоростью вращения 7,200 оборотов в минуту (об./мин., rpm) вместо широко применявшихся в последние годы накопителей с 5,400 об./мин.

Повышение скорости вращения, диктуемое требованиями к производительности винчестеров со стороны сегодняшних операционных систем и приложений, дает выигрыш как по среднему времени ожидания, так и по внутренней скорости передачи данных. Причем в первом случае в основном эффект достигается при случайных обращениях, а во втором v при чтении больших массивов последовательно записанных данных (графики, аудио- или видеоданных).

Из чего складывается время считывания данных с винчестера (I/O time) при типичных случайных запросах? Сначала контроллеру жесткого диска необходимо время, чтобы обработать поступивший запрос, выдать команды на привод головок (command overhead time). Затем некоторое время уйдет на передвижение головок к заданному цилиндру (seek time). После этого придется подождать, пока диски повернутся и под головками окажутся необходимые секторы с данными (latency time). Потом начнется чтение и передача данных в компьютер (data transfer time). То есть

I/O time = command overhead time + seek time +

latency time + data transfer time

В этом уравнении время ожидания полностью определяется скоростью вращения пластин и в среднем равно поло-вине периода оборота дисков. У винчестеров со скоростью вращения 5400 об./мин. среднее ожидание составляет 5.6 миллисекунды (мс), а при переходе к 7200 об./мин. оно сокращается до 4.2 мс. Если принять остальные составляющие равными для обоих винчестеров (а так оно практически и есть), можно прикинуть прирост производительности, получаемый за счет перехода на 7200 об./мин.

По данным IBM, у современных винчестеров для настольных РС время обработки команды составляет примерно 0.5мс, среднее время поиска равно 9.5 мс, на передачу 4 килобайт данных уходит приблизительно 0.3 мс. Тогда получаем, что винчестеру со скоростью вращения пластин 5400 об./мин. на чтение типичного 4-килобайтного блока данных (одного кластера FAT32) потребуется 15.9 мс, в то время как винчестер со скоростью вращения 7200 об./мин. с этой задачей справится за 14.5 мс.

Итак, переход на 7200 оборотов в минуту при выполнении операций чтения типичных 4-килобайтных блоков данных дает 10-процентный прирост производительности по сравнению с винчестерами на 5400 об./мин.

Но это еще не все. Повышение скорости вращения пластин сказывается и на внутренней скорости передачи данных (disk transfer rate).Теоретическая максимальная внутренняя скорость передачи данных (то есть скорость, с которой данные записываются на диск или считываются с него) определяется временем оборота дисковых пластин (revolution time), размером сектора (sector size), числом секторов на треке (sectors per track), числом треков в цилиндре, или числом рабочих поверхностей установленных в винчестере дисковых пластин (tracks per cylinder), и временем, необходимым для переключения между головками (временем перехода между треками в цилиндре). Для вычисления теоретической максимальной внутренней скорости передачи данных можно воспользоваться упрощенной формулой:

max. disk transfer rate =

sectors per track * sector size / revolution time

Время оборота пластин в винчестере со скоростью вращения 7200 об./мин. составляет 8.3 мс, а при 5400 об./мин. v 11.1 мс. При равном для обоих накопителей числе секторов на трек и одинаковом размере сектора (в большинстве операционных систем это 512 байт) получаем, что переход на 7200 об./мин. обеспечивает увеличение теоретической максимальной внутренней скорости передачи данных на 33%.

Такой, или почти такой, прирост производительности наблюдается при считывании и записи больших последовательных блоков данных. Этот режим характерен для графических и мультимедийных приложений, баз данных.

Кстати, повышение скорости вращения иногда заставляет уменьшить число секторов на трек, то есть плотность записи данных. Это связано с тем, что электронный канал чтения обладает ограниченной пропускной способностью. При слишком высокой плотности записи и скорости вращения пластин она может оказаться недостаточной для обработки всех данных, проходящих в единицу времени под головками чтения/записи. Поскольку сегодня задача увеличения плотности записи и емкости винчестеров стоит не менее остро, наиболее емкие накопители пока выпускаются с меньшей скоростью вращения пластин.

Увеличение емкости кэш-буфера

Это еще один путь повышения производительности винчестеров. Встроенный буфер винчестера выполняет две функции. Во-первых, он служит мостом между каналом чтения и внешним интерфейсом. Данные между ними не могут передаваться напрямую из-за большой разницы между внутренней и внешней скоростями. На этом этапе невозможно обойтись без промежуточного буфера, позволяющего сгладить задержки при обращениях к диску.

Во-вторых, буфер служит своего рода сверхбыстрым накопителем, обеспечивающим выдачу данных с максимальной для внешнего интерфейса скоростью. За счет буфера большой емкости и удачно подобранных алгоритмов его заполнения удается существенно повысить производительность винчестера.Когда поступает запрос на чтение, контроллер винчестера первым делом проверяет, нет ли требуемых данных в кэш-буфере. Если их там не оказалось, происходит чтение с дисковых пластин, прочитанные данные помещаются в буфер и передаются из него по внешнему интерфейсу операционной системе компьютера. Каким же образом запрашиваемые данные могут оказаться в буфере?

Для этого применяются алгоритмы упреждающего чтения. Прочитав секторы, содержащие затребованные приложением или системой данные, винчестер не останавливается и на всякий случай переносит в буфер содержимое следующих секторов. Поскольку сегодня приложения редко довольствуются малыми порциями данных, чтение носит последовательный характер и загодя прочитанные секторы обычно приходятся кстати при следующих обращениях. Когда же запрашиваемые данные находятся в буфере, их выдача происходит практически моментально v на это уходят не миллисекунды, как при чтении, а микросекунды. Эффективность кэширования подтверждают все тесты.

Однако просто поставить на винчестер большой буфер недостаточно. Сегодняшние приложения и системы отличаются не только хорошим аппетитом по части данных, но и многозадачностью. То есть, к винчестеру обращаются одновременно не одна, а сразу несколько параллельно работающих программ или вычислительных процессов, запущенных одной программой.

Корпорация IBM, как и другие производители, постоянно совершенствует алгоритмы, оптимизирующие использование винчестерного кэш-буфера при работе в современных компьютерных системах. При этом учитывается, что серверы, рабочие станции и обычные персональные компьютеры совершенно по-разному обращаются к дискам. Поэтому выпускаемые для них винчестеры оснащаются разными интерфейсами, буферами разной емкости.

Повышения эффективности кэш-буфера добиваются, во-первых, наращиванием его емкости и, во-вторых, применением хитроумных алгоритмов сегментирования. Под сегментированием буфера понимается разделение его на несколько частей (сегментов), используемых независимо друг от друга, v для обслуживания параллельных очередей запросов чтения, поступающих, например, от разных программ. Адаптивное сегментирование предусматривает гибкий подбор числа сегментов и их емкости.

Чем выше внутренняя скорость передачи данных, чем более быстрым интерфейсом оснащен винчестер, тем больший ему требуется буфер. На жестких дисках для персональных компьютеров со скоростью вращения пластин 5,400 об./мин. В большинстве случаев устанавливались 256-килобайтные буферы. Сегодня высокопроизводительные винчестеры со скоростью вращения 7200 об./мин. и интерфейсами Ultra ATA-33/66 оснащаются как минимум 512-килобайтными буферами. SCSI-винчестеры, предназначенные для рабочих станций и серверов, нуждаются в буферах емкостью 1, 2 и даже 4 мегабайта. Причем 4-мегабайтные буферы SCSI-винчестеров IBM Ultrastar разделяются на 4 сегмента по 920 килобайт каждый (количество сегментов конфигурируется).

Тут все зависит от характера применяемых программных приложений и, следовательно, обращений к винчестеру. При работе баз данных с большими записями чтение и запись носят последовательный характер, и тогда целесообразно разделять буфер на несколько емких сегментов. Когда преобладают случайные обращения, может понадобиться разделение буфера на большее число сегментов. В идеале количество сегментов должно чуточку превышать число параллельно обслуживаемых винчестером потоков ввода/вывода.

Прерывание потока данных, поступающего по внешнему интерфейсу винчестера, происходит тогда, когда буфер оказывается полным при записи или пустым при чтении. И в том, и в другом случае это происходит из-за более низкой скорости передачи данных по каналу чтения, чем по внешнему интерфейсу. Уменьшить количество таких прерываний позволяет увеличение емкости сегментов буфера. Наибольший эффект ощущается при обслуживании мощных потоков данных, таких как последовательное чтение или запись громоздких графических файлов, аудио- и видеоданных.

Предположим, что с винчестера считывается 256-килобайтный поток данных. Если на нем установлен буфер емкостью 1 мегабайт, разделенный на 4 сегмента по 160 килобайт каждый, емкости такого сегмента окажется недостаточно для поддержания непрерывности потока данных. А 4-мегабайтный буфер, поделенный на 4 сегмента по 920 килобайт, справится с задачей легко. В этом случае практически всегда следующая запись, за которой обратится программа, будет считана с диска загодя и выдана с максимальной скоростью из буфера. Буфер не будет опорожняться, а SCSI-интерфейс v отключаться.

И еще один вопрос напоследок. Зачем устанавливать большой буфер на винчестер, если операционные системы тоже организуют кэширование данных, считываемых или записываемых на жесткий диск, причем в их распоряжении вся системная память компьютера, из которой можно спокойно выделить для этих целей и 4 мегабайта, и в несколько раз больше. Дело в том, что размещение буфера на винчестере позволяет в несколько раз сократить нагрузку на интерфейс. В частности, по нему не будут передаваться данные, считываемые с упреждением, а ведь заранее неизвестно, пригодятся они или нет.


Огромное разнообразие моделей винчестеров затрудняет выбор подходящего. Кроме нужной емкости, очень важна и производительность, которая определяется в основном его физическими характеристиками. Такими характеристиками являются среднее время поиска, скорость вращения, внутренние и внешние скорости передачи, объем кэш-памяти.

q Среднее время поиска

Жесткий диск затрачивает какое-то время для того, чтобы переместить магнитную головку из текущего положения в новое, требуемое для считывания очередной порции информации. В каждой конкретной ситуации это время разное, в зависимости от расстояния, на которое должна переместиться головка. Обычно в спецификациях приводятся только усредненные значения, причем применяемые разными фирмами алгоритмы усреднения в общем случае различаются, так что прямое сравнение затруднено. Так, фирмы Fujitsu, Western Digital проводят усреднение по всем возможным парам дорожек, фирмы Maxtor и Quantum применяют метод случайного доступа. Получаемый результат может дополнительно корректироваться. Значения времени поиска для записи часто несколько выше, чем для чтения. Некоторые производители в своих спецификациях приводят только меньшее значение (для чтения). В любом случае кроме средних значений полезно учитывать и максимальное (через весь диск), и минимальное (то есть с дорожки на дорожку) время поиска.

q Скорость вращения

С точки зрения быстроты доступа к нужному фрагменту записи скорость вращения оказывает влияние на величину так называемого скрытого времени, которое требуется для того, чтобы диск повернулся к магнитной головке нужным сектором. Среднее значение этого времени соответствует половине оборота диска и составляет 8,33 мс при 3600 об/мин, 6,67 мс при 4500 об/мин, 5,56 мс при 5400 об/мин и 4,17 мс при 7200 об/мин. Значение скрытого времени сопоставимо со средним временем поиска, так что в некоторых режимах оно может оказывать такое же, если не большее, влияние на производительность.

q Внутренняя скорость передачи

Скорость, с которой данные записываются на диск или считываются с диска. Из-за зонной записи она имеет переменное значение - выше на внешних дорожках и ниже на внутренних. При работе с длинными файлами во многих случаях именно этот параметр ограничивает скорость передачи.

q Внешняя скорость передачи

Скорость (пиковая), с которой данные передаются через интерфейс. Она зависит от типа интерфейса и имеет чаще всего фиксированные значения: 8,3; 11,1; 16,7 Мбайт/с для Enhanced IDE режимов (РЮ Mode 2, 3,4); 33,3 и 66,6 для Ultra DMA; 5, 10, 20,40, 80 Мбайт/с для синхронных SCSI, Fast SCSI-2, Fasti/Vide SCSI-2 Ultra SCSI, Ultra SCSI (16 разрядов) соответственно.

q Объем cache-памяти (дисковой буфер)

Объем и организация cache-памяти (внутреннего буфера) может заметно влиять на производительность жесткого диска. Также как и для обычной cache-памяти, прирост производительности по достижении некоторого объема резко замедляется. Сегментированная cache.-память большого объема актуальна для производительных SCSI-дисков, используемых в многозадачных средах.

Контроллеры

Контроллер - плата, управляющая работой периферийного устройства (дисководом, винчестером, монитором и т.д.) и обеспечивающая их связь с основной платой.

Отметим, что на всех современных материнских платах уже присутствуют (входят в их состав) контроллеры дисководов, винчестеров (с интерфейсом IDE), принтера и "мыши" (параллельный и последовательный порт). Мы упоминаем об этом, т.к. ранее на 286, 386 и части 486 платах (с VLB-шиной) они не устанавливались и выпускались в виде отдельной платы (так называемой "мультикарты" - multi IDE HDD/FDD), которую необходимо было вставлять в свободный слот (разъем) на материнской плате.

К платам, расширяющим возможности компьютера, относятся: плата модема или факс-модема, видеоввода, звуковая и другие платы специального назначения (например, плата АЦП - аналого-цифровой преобразователь на несколько входов для измерений и т.д.).

Видеоконтроллером является графическая плата SVGA. Платы SVGA, впрочем как и модемные, звуковые и др., выпускаются огромным количеством различных фирм в большом ассортименте (различаются по своим возможностям и цене), поэтому мы подробно рассмотрим их в последующих главах. Здесь же лишь упомянем, что слоты (разъемы) расширения на материнской плате, куда вставляются подобные платы, бывают нескольких вариантов (как по своей внутренней организации, так и по конструктивному исполнению): ISA, VESA (по-другому VLB), PCI и AGP. Подробно эти стандарты шин расширения будут описаны далее. Скажем только, что контроллеры изготавливаются с расчетом их подсоединения к ISA или VESA или PCI или AGP и имеют соответствующий одному из перечисленных разъем, а на материнских платах обычно расположены несколько таких разъемов одновременно. Например, материнская плата GA-6BXC оснащена тремя разъемами ISA, четырьмя PCI и одним AGP.

Производительность дисковой системы зависит от быстродействия кинематики жесткого диска . Механические движущиеся детали пока остаются самым медленным звеном в цепи передачи данных от магнитной поверхности диска в оперативную память компьютера. Наиболее длительными фазами в операциях чтения/записи данных являются:

  • Поиск дорожки и считывание нескольких сервометок для точного позиционирования магнитной головки на дорожке, содержащей требуемый сектор .
  • Ожидание поворота диска на угол, необходимый для доступа к сектору идентифицированной дорожки (среднестатистически - половина оборота магнитного диска).
Скоростные характеристики жесткого диска обычно определяется двумя параметрами:
  • Среднее время доступа (результат деления времени, потребовавшегося для серии чтений случайного сектора, на количество считанных секторов).
  • Средняя скорость чтения (количество секторов, последовательно считанных с поверхности магнитного диска за определенный промежуток времени).

Однако часто используются и дополнительные параметры, позволяющие более точно определить производительность дисковой системы в целом:

  • Буферизированная скорость чтения (скорость обмена информацией между контроллером материнской платы и контроллером жесткого диска).
  • Устойчивая скорость чтения (наиболее часто повторяющаяся скорость при последовательном чтении одинаковых блоков информации).

Повышение скорости перемещения магнитных головок ограничивается инерционностью достаточно массивной системы позиционирования и разрушительной вибрацией, возникающей при быстрых хаотичных (несбалансированных) возвратно-поступательных движениях механических компонентов жесткого диска. Поэтому в эволюции жестких дисков основным путем увеличения производительности стало увеличение скорости вращения магнитного диска, что уменьшает время ожидания сектора и увеличивает скорость линейного чтения. Скорость линейного чтения увеличивается и при повышении плотности записи и удаления дорожки от центра вращения магнитного диска. Использование реализованной в жестких дисках технологии управления акустическим шумом (AAM) позволяет управлять скоростью позиционирования магнитных головок, т.е. регулировать среднее время доступа.

Переключение на другую дорожку в пределах одного цилиндра занимает в среднем порядка одной миллисекунды. Это время складывается из ничтожно малого времени переключения головок, производящегося электроникой жесткого диска, и времени позиционирования головки. Дорожки в цилиндре в силу погрешностей изготовления находятся не строго друг под другом, а с некоторым разбросом. Для того, чтобы установить головку точно на дорожку, требуется считать определенное количество сервометок, а на это уходит дополнительное время. Однако за миллисекунду шпиндель накопителя с частотой вращения 7200 об/мин успевает повернуться почти на одну восьмую оборота. Поэтому первый сектор следующей дорожки в цилиндре смещен относительно предыдущей примерно на 45 градусов, что позволяет избежать "холостого" оборота магнитного диска.

Переход к соседнему цилиндру также требует времени (типовое значение 2-4 мс). С учетом этого первый сектор первой дорожки следующего цилиндра сдвинут относительно последнего сектора последней дорожки предыдущего цилиндра. Это позволяет снизить потери времени на ожидание того момента, когда нужный сектор окажется под головкой в режиме непрерывного чтения файлов. Наиболее эффективным с точки зрения скорости чтения является линейное расположение секторов, принадлежащих одному файлу, поэтому необходимо периодически делать дефрагментацию файловой системы , чтобы полностью реализовать заложенный в накопителе потенциал.

Если сравнить достижения в области развития жёстких дисков с видеокартами или центральными процессорами, то легко можно заметить, что широкая публика, в общем-то, не осведомлена о каких-либо технологиях. Рынок жёстких дисков кажется скучным, но это только на первый взгляд. На самом деле, рынок жёстких дисков постоянно движется вперёд, плотность записи и производительность продолжают увеличиваться. Впрочем, за исключением ёмкости, уследить за этим прогрессом среднему потребителю сложно. Даже эксперты иногда не могут различить два похожих жёстких диска, если бы не этикетка с характеристиками, хотя их производительность может сильно отличаться . Если сравнивать жёсткие диски со схожими техническими спецификациями, скажем, винчестеры в одной линейке, измеряемая разница всё равно есть.

Мы специально упомянули "измеряемую" разницу, поскольку вряд ли вы сможете отличить "на глаз" жёсткие диски Hitachi и Western Digital, если они работают в одинаковых системах (мы имеем в виду последние поколения). Заметные отличия существуют, скажем, между жёстким диском Western Digital Raptor на 10 000 об/мин и обычным винчестером на 7 200 об/мин, или между конфигурацией RAID 0 и одиночным жёстким диском, но между накопителями на 7 200 об/мин для массового рынка вы вряд ли ощутите какую-либо разницу по производительности, за исключением нюансов. Впрочем, другие различия, конечно, есть: разные ёмкости, разные размеры кэша, интерфейсы Serial ATA или UltraATA.

В нашей статье мы рассмотрим все параметры жёстких дисков, которые так или иначе влияют на производительность. Сюда относятся форм-фактор HDD, диаметр и число пластин, технология и плотность записи, скорость вращения и время доступа, интерфейс и объём кэш-памяти. Мы рассмотрим линейку жёстких дисков Seagate Barracuda 7200.10, сравним технически идентичные жёсткие диски с разной ёмкостью, размерами кэша и интерфейсами (Serial ATA против UltraATA). Вы, наверное, будете удивлены, узнав, что самая ёмкая модель отнюдь не является самой быстрой, да и 16 Мбайт кэша помогают не всегда.


Винчестер без крышки. Основой являются вращающиеся пластины (жёсткие диски), с которыми работают головки чтения/записи. Данная модель вышла из строя из-за нарушения герметичности корпуса и попадания влаги.

Винчестеры используют одну или больше магнитных пластин с концентрическими дорожками. Они записываются от наружной стороны к внутренней, запись производится с помощью магнитного поля, которое изменяет ориентацию мелких частиц - магнитных доменов. Перемещающийся механический привод используется для позиционирования головок чтения/записи на пластине. Если пластин несколько, то и головок чтения/записи на приводе тоже несколько (по одной на каждую сторону пластины). Привод перемещает головки подобно проигрывателю грампластинок, достигая внешних или внутренних дорожек. Для хранения данных используется как верхняя, так и нижняя сторона пластин.

Биты данных собираются в так называемые секторы, которые, в свою очередь, составляют кластеры. Кластер - это минимальная логическая единица для хранения данных. В зависимости от файловой системы (Windows использует NTFS или FAT32), размер кластера может меняться. Чем больше кластер, тем выше будет последовательная пропускная способность, но вы будете быстро терять доступную ёмкость, если средний размер файла будет намного меньше размера кластера.

Форм-фактор и высота

Снаружи самым очевидным различием между жёсткими дисками является и форм-фактор, который зависит от диаметра пластин. Настольные жёсткие диски используют 3,5" пластины, а мобильные - 2,5". Жёсткие диски уровня предприятия внешне могут выглядеть как 3,5" модели, но на самом деле они могут использовать пластины меньшего диаметра, чтобы обеспечить высокую скорость вращения. Жёсткие диски для ультрапортативных устройств часто используют пластины диаметром всего 1,8", а микро-приводы собираются на 1" и 0,8" пластинах.

Жёсткие диски форм-фактора 3,5" обычно имеют высоту 1", которой хватает для установки вплоть до пяти пластин. Жёсткие диски для ноутбуков построены на дизайне с одной или двумя пластинами и имеют высоту 9,5 или 12,5 мм, хотя последние подходят далеко не для всех ноутбуков. Если взглянуть в сторону 1" и 0,8" жёстких дисков, то здесь заметна тенденция в направлении собственных решений и высот, поскольку накопители часто оптимизируются под нужды клиентов.

Чем больше пластин, тем больше получается ёмкость жёсткого диска, поскольку суммарная ёмкость рассчитывается умножением ёмкости пластины на число пластин. Например, плотность записи 160 Гбайт на пластину позволяет производителям получать ёмкость 640 Гбайт с четырьмя пластинами. С другой стороны, чем больше пластин, тем больше головок чтения/записи используется, что повышает риск аппаратного сбоя из-за большого числа подвижных элементов. Также увеличивается трение и энергопотребление. Что же касается цены, то один ёмкий жёсткий диск по-прежнему стоит дешевле, чем пара небольшого объёма. Единственным исключением можно считать высокопроизводительные массивы RAID в серверах, где используется несколько жёстких дисков, чтобы увеличить производительность.

Ёмкость и технологии записи

Мы уже упоминали плотность записи данных, которая выражается в гигабитах на квадратный дюйм (или сантиметр). Её не стоит напрямую сравнивать с ёмкостью пластины, поскольку производители не всегда используют для хранения данных всю пластину. Кроме того, ёмкость пластины обычно рассчитывается для 3,5" жёсткого диска, а плотность записи данных остаётся неизменной для разных форм-факторов. Следует отметить, что плотность записи данных зависит от используемых технологий.

Перпендикулярная магнитная запись (Perpendicular Magnetic Recording, PMR) является самой современной технологией. В отличие от обычной параллельной записи, когда магнитные домены ориентированы параллельно плоскости пластины, здесь они ориентированы вертикально. Подобный механизм позволяет снизить взаимное влияние магнитных доменов друг на друга (явление суперпарамагнетизма) и увеличить число бит на единицу площади, что повышает плотность записи данных. В перспективе, благодаря внедрению перпендикулярной записи, индустрия жёстких дисков надеется десятикратно увеличить ёмкость. Вскоре на рынке должен появиться первый жёсткий диск PMR с ёмкостью 1 Тбайт, и тогда будет установлен новый рекорд ёмкости.

В будущем мы наверняка перейдём на запись Heat-Assisted Magnetic Recording (HAMR). В данной технологии лазер подогревает поверхность диска, чтобы снизить интенсивность магнитного поля, которое требуется для влияния на магнитные домены пластин. В итоге мы получим дальнейшиё рост плотности записи данных, поскольку технология нагревания позволяет более точно управлять магнитными доменами.

Конечно, чем выше плотность данных, тем лучше, поскольку при этом возрастает и скорость чтения данных. В результате современные 3,5" жёсткие диски на 7 200 об/мин всегда обгоняют старые модели. Впрочем, время доступа от увеличения плотности записи не меняется, поскольку ускорить позиционирование головок без существенной механической нагрузки очень сложно.

Скорость вращения шпинделя

Скорость вращения шпинделя определяется в оборотах в минутах (RPM), и на сегодня это один из самых основных параметров, влияющих на производительность. Высокая скорость вращения шпинделя даёт более высокую линейную скорость головок чтения/записи, то есть через них можно проводить больше данных. Чем быстрее вращается шпиндель, тем больше данных можно считать за единицу времени. Кроме того, высокая скорость вращения шпинделя положительно сказывается на времени доступа: когда головки встанут на нужную дорожку, требуется определённое время, прежде чем подойдёт требуемый сектор. Высокая скорость вращения шпинделя позволяет уменьшить эту задержку. Впрочем, современные жёсткие диски обычно предварительно кэшируют данные, ожидая, когда головка доберётся до нужного сектора. Но даже потом жёсткий диск обычно ожидает поступления служебной дорожки, которая обозначает начало/конец дорожки с данными.

Жёсткие диски формата 3,5" для серверов и рабочих станций имеют скорость вращения 10 000 или 15 000 об/мин, в то время как настольные жёсткие диски обычно работают на 7 200 об/мин. На рынке настольных ПК только накопители Western Digital Raptor дают 10 000 об/мин. Поэтому данные модели являются идеальным вариантом для энтузиастов. Конечно, Western Digital Raptor по-прежнему имеют очень высокую стоимость хранения гигабайта, так что за 150-Гбайт Raptor придётся выложить даже больше, чем за 500-Гбайт жёсткий диск на 7 200 об/мин.

Жёсткие диски для ноутбуков вращаются на меньших оборотах: мобильные винчестеры на 4 200 об/мин недавно уступили место моделям на 5 400 об/мин даже в недорогих ноутбуках. Впрочем, есть и мобильные винчестеры на 7 200 об/мин. Одной из причин снижения скорости вращения шпинделя является высокое энергопотребление. Ноутбуки часто работают от аккумулятора, поэтому многие производители не спешат устанавливать жёсткие диски на 7 200 об/мин в популярные модели ноутбуков. Винчестеры 1,8" и меньшего формата вращаются на 4 200 об/мин, а 1" и 0,8" модели работают на ещё меньших оборотах.

Новые 3,5" жёсткие диски со скоростью вращения 7 200 об/мин дают скорость чтения с пластин до 90 Мбайт/с, а 2,5" накопители существенно медленнее - до 30-35 Мбайт/с. 1,8" жёсткие диски ещё медленнее.

Диаметр пластин

Если сравнивать жёсткие диски только по скорости вращения шпинделя, то можно подумать, что разные модели работают одинаково, но это не так. Конечно, высокая скорость вращения необходима для высокой производительности, но эффективная скорость, с которой головки считывают/записывают секторы, существенно разнится.

Возьмём жёсткие диски с одинаковой скоростью вращения шпинделя. Все они имеют одинаковую угловую скорость, в отличие от оптических приводов. В результате расстояние, которое за секунду проходят головки на внешних дорожках больше, чем на внутренних дорожках. На наружных дорожках 3,5" жёстких дисков длина дорожки составляет примерно 25 см, что существенно больше, чем шесть с лишним сантиметров около шпинделя. То есть линейная скорость на внешних дорожках примерно в четыре раза больше, чем на внутренних дорожках. Поэтому скорость передачи данных на внешних дорожках выше, чем на внутренних.

Именно поэтому утилиты дефрагментации, которые собирают фрагменты файлов в единое последовательное пространство, всегда располагают файл подкачки Windows (swap) в начале жёсткого диска, где он будет быстрее всего работать. Другой вывод заключается в том, что производительность 2,5" жёсткого диска никогда не достигнет скорости 3,5" винчестера, поскольку линейная скорость у 2,5" накопителя существенно меньше.

Число пластин

Если вы провели некоторое время за изучением линеек жёстких дисков, то наверняка знаете, что доступные ёмкости не всегда соответствуют заявленному производителем объёму на пластину. Например, Seagate Barracuda 7200.10 может хранить почти 200 Гбайт на пластину, то есть версии на 250 и 320 Гбайт.

Объяснение кроется в требованиях рынка. Некоторые покупатели специально заказывают жёсткие диски, скажем, на 250 Гбайт. Ценовое давление - вторая причина, почему производители предлагают разные уровни ёмкости: например, пользователь может позволить себе только 250-Гбайт винчестер, а большая ёмкость ему попросту не нужна. Вполне понятно, что производители должны предлагать так называемые "золотые середины" для разных сегментов рынка, с разными ёмкостями. Кроме того, следует учитывать и дефекты производства. Выгодно продавать как можно большее количество жёстких дисков (пусть и с урезанной ёмкостью), чем стараться всегда предлагать накопители с максимально доступной ёмкостью.

По этим причинам многие жёсткие диски не всегда используют полную доступную ёмкость. У них, чаще всего, не используются медленные внутренние дорожки, а соотношение максимальной ёмкости пластины, числа пластин и суммарной ёмкости оказывается весьма странным. Конечно, при этом теряется ёмкость, зато и минимальные скорости передачи оказываются выше.

Хотя сегодня можно найти много моделей с кэшем 2 Мбайт, стандартом для настольных жёстких дисков для массового рынка можно считать 8 Мбайт. Появляется немало моделей и на 16 Мбайт. Увеличение объёма кэша разумно не только с учётом того, что цены на DRAM падают, но и с технической точки зрения. Жёсткие диски используют алгоритмы для предварительного кэширования данных или оставляют определённые данные в кэше на случай того, что они будут запрошены повторно. Жёсткие диски Serial ATA также требуют определённого объёма памяти, чтобы хранить входящие команды, поскольку многие винчестеры способны менять порядок команд, дабы обрабатывать их максимально эффективно, с минимальным физическим перемещением головок. Эта функция называется "родной" очередью команд (Native Command Queuing, NCQ), она тоже требует определённого объёма памяти для своей работы, хотя и небольшого.

Мы хотели проверить, насколько велика разница в производительности между жёсткими дисками с 8 и 16 Мбайт памяти. Поскольку в нашу лабораторию поступила почти полная линейка жёстких дисков Seagate Barracuda 7200.10, мы смогли отобрать четыре разные модели на 500 Гбайт, позволяющие ответить на этот вопрос. Все из них используют три пластины и различаются только интерфейсами (SATA/300 или UltraATA/100) и размером кэша.

Сравнительная таблица 500-Гбайт моделей Seagate Barracuda 7200.10
Производитель Seagate Seagate Seagate Seagate
Продукт Barracuda 7200.10 Barracuda 7200.10 Barracuda 7200.10 Barracuda 7200.10
Модель ST3500630A ST3500630AS ST3500830A ST3500830AS
Ёмкость 500 Гбайт 500 Гбайт 500 Гбайт 500 Гбайт
Скорость вращения шпинделя 7 200 об/мин 7 200 об/мин 7 200 об/мин 7 200 об/мин
Число пластин 3 3 3 3
Кэш 16 Мбайт 16 Мбайт 8 Мбайт 8 Мбайт
Нет Да Нет Да
Интерфейс UltraATA/100 SATA/300 UltraATA/100 SATA/300

Тестовая конфигурация

Системное аппаратное обеспечение
Процессоры 2x Intel Xeon (ядро Nocona), 3,6 ГГц, FSB800, кэш L2 1 Мбайт
Платформа Asus NCL-DS (Socket 604), чипсет Intel E7520, BIOS 1005
Память Corsair CM72DD512AR-400 (DDR2-400 ECC, reg.), 2x 512 Мбайт, задержки CL3-3-3-10
Системный жёсткий диск Western Digital Caviar WD1200JB, 120 Гбайт, 7 200 об/мин, кэш 8 Мбайт, UltraATA/100
Контроллеры накопителей Intel 82801EB UltraATA/100 (ICH5)
Silicon Image Sil3124, PCI-X
Сеть Встроенный контроллер Broadcom BCM5721 Gigabit Ethernet
Видеокарта Встроенная ATi RageXL, 8 Мбайт
Тесты и настройки
Тесты производительности c"t h2benchw 3.6
Тесты ввода/вывода IOMeter 2003.05.10
Fileserver-Benchmark
Webserver-Benchmark
Database-Benchmark
Workstation-Benchmark
Системное ПО
ОС Microsoft Windows Server 2003 Enterprise Edition, Service Pack 1
Драйвер платформы Intel Chipset Installation Utility 7.0.0.1025
Графический драйвер Default Windows Graphics Driver

Результаты тестов: 8 Мбайт против 16 Мбайт

Мы уже говорили о том, что производители урезают доступную ёмкость, чтобы предложить модели "золотой середины". Давайте посмотрим, какова разница между самой ёмкой и самой маленькой моделями Barracuda 7200.10. Как можно будет видеть, самая ёмкая модель не всегда является самой быстрой.

Производитель Seagate Seagate Seagate Seagate Seagate
Линейка Barracuda 7200.10 Barracuda 7200.10 Barracuda 7200.10 Barracuda 7200.10 Barracuda 7200.10
Модель ST3250820A ST3250820AS ST3320820A ST3320820AS ST3400620AS
Ёмкость 250 Гбайт 250 Гбайт 320 Гбайт 320 Гбайт 400 Гбайт
Скорость вращения шпинделя 7200 об/мин 7200 об/мин 7200 об/мин 7200 об/мин 7200 об/мин
Число пластин 2 2 2 2 3
Объём кэша 8 Мбайт 8 Мбайт 8 Мбайт 8 Мбайт 16 Мбайт
"Родная" очередь команд (NCQ) Нет Да Нет Да Да
Интерфейс Ultra ATA/100 SATA/300 Ultra ATA/100 SATA/300 SATA/300
Производитель Seagate Seagate Seagate Seagate Seagate
Линейка Barracuda 7200.10 Barracuda 7200.10 Barracuda 7200.10 Barracuda 7200.10 Barracuda 7200.10
Модель ST3400820A ST3400820AS ST3500630A ST3500630AS ST3500830A
Ёмкость 400 Гбайт 400 Гбайт 500 Гбайт 500 Гбайт 500 Гбайт
Скорость вращения шпинделя 7200 об/мин 7200 об/мин 7200 об/мин 7200 об/мин 7200 об/мин
Число пластин 3 3 3 3 3
Кэш 8 Мбайт 8 Мбайт 16 Мбайт 16 Мбайт 8 Мбайт
"Родная" очередь команд (NCQ) Нет Да Нет Да Нет
Интерфейс Ultra ATA/100 SATA/300 Ultra ATA/100 SATA/300 Ultra ATA/100
Производитель Seagate Seagate Seagate Seagate
Линейка Barracuda 7200.10 Barracuda 7200.10 Barracuda 7200.10 Barracuda 7200.10
Модель ST3500830AS ST3750640A ST3750840A ST3750640AS
Ёмкость 500 Гбайт 750 Гбайт 750 Гбайт 750 Гбайт
Скорость вращения 7200 об/мин 7200 об/мин 7200 об/мин 7200 об/мин
Число пластин 3 4 4 4
Кэш 8 Мбайт 16 Мбайт 8 Мбайт 16 Мбайт
"Родная" очередь команд (NCQ) Да Нет Нет Да
Интерфейс SATA/300 Ultra ATA/100 Ultra ATA/100 SATA/300

Версии на 250 и 320 Гбайт построены на двух пластинах, винчестеры на 400 и 500 Гбайт - на трёх, а 750-Гбайт топовая модель тоже имеет три пластины. Только 750-Гбайт топовая модель поддерживает максимальную ёмкость на пластину более 190 Гбайт. В следующей таблице приведена потерянная ёмкость для каждой из модели.

Barracuda 7200.10 Теоретическая максимальная ёмкость Потеря в Гбайт Потеря в %
250 Гбайт, 2 пластины 332 Гбайт 82 Гбайт 25%
320 Гбайт, 2 пластины 332 Гбайт 12 Гбайт 3%
400 Гбайт, 3 пластины 570 Гбайт 170 Гбайт 30%
500 Гбайт, 3 пластины 570 Гбайт 70 Гбайт 12%
750 Гбайт, 4 пластины 750+ Гбайт - 0%

Результаты тестов

Для нашего проекта мы взяли жёсткие диски Serial ATA и UltraATA, поэтому ниже приведены единичные графики.

Мы построили диаграммы передачи данных с помощью результатов всех жёстких дисков с одинаковым интерфейсом. Поэтому мы отображаем производительность не только одного жёсткого диска, а всех жёстких дисков, с минимальными и максимальными значениями между ёмкостями 250 и 750 Гбайт.

Скорость передачи данных

Результаты очень близки. Да, между накопителями Serial ATA и UltraATA есть разница, но она мизерная. Можно заметить, что жёсткие диски SATA с меньшими потерями доступной ёмкости на пластину дают более высокую скорость передачи в целом.


Тесты производительности ввода/вывода показывают, что жёсткие диски, которые не используют полный потенциал ёмкости, дают большее число операций ввода/вывода в секунду, чем более эффективные по ёмкости модели.

Мы рассмотрели несколько моделей Seagate Barracuda 7200.10, чтобы оценить разницу в производительности. И обнаружили, что если два жёстких диска отличаются только размером кэша, то разница между ними практически нулевая: 16 Мбайт кэша не дают ощутимого преимущества по сравнению с 8 Мбайт в наших тестах. Это относится как к жёстким дискам Serial ATA, так и UltraATA. Вообще, мы ожидали, что жёсткие диски SATA будут иметь определённое преимущество, но в случае линейки 7200.10 16 Мбайт кэша окажутся пустой тратой денег по сравнению с 8-Мбайт альтернативами. В то же время, 16 Мбайт кэша не повредят, если цена равная...

Учитывая, что между разными моделями одной линейки жёстких дисков есть различия, можно сделать более грамотный выбор покупки. Жёсткие диски, которые не используют максимально возможную ёмкость исходя из максимальной ёмкости пластин, демонстрируют немного более быстрое время доступа, поскольку рабочая область диска уменьшается, хотя винчестеры, которые используют полную ёмкость, обеспечивают немного лучшую скорость передачи данных.

Впрочем, следует отметить, что разница между самым быстрым и самым медленным жёстким диском в пределах одной линейки явно меньше, чем разница между разными поколениями. По нашему опыту, продукт нового поколения всегда обгоняет старый.